[EFLECEC

- Code Query Language -

Code Query Language

Second Edition (01/01/2010)

Any type of modification or distribution is not allowed or has to be granted by Software-Engineering
Fichtner/Weisser GbR.

© Copyright Software-Engineering Fichtner/Weisser GbR 2010. All rights reserved.

Table of Contents

1 INtrodUCHiON. ..o 6
2 Search Entities. ..o 7
2.1 PaCKAgeS...ii it 7
2.2 ClaSSS. i 7
2.3 Methods....coiiiii 7
2.4 Fields. . 7
2.5 CONStrUCEOrS. i 7
2.6 ANNOtatioNS....ciiiiiiiii 8
2.7 INSErUuCtioNS.. ..o 8
2.8 LIterals..ee i 8
3 YN it 9
4 Attribute Selectors.. ..o 10
4.1 LY P 10
L &) 4 T= 1 L= 10
4.3 @eNUItY. i 10
R) = 1 11
45 @IOCAtiON. .. 11
4.6 @ENIMES. e 11
A) of= | o 11
4.8 @MOIfiEr . 11
4.9 ©@MAGIC_NO..cctiiiiiiieiieeieeee e 11
4. 10 @MEriC ¥ e 11
5 Logical Operators.....cccooiiiiiiiiiic 12
5.1 NO 12
o T Y o 12
o TG T © 1 12
T D (o | S 12
6 Context SWItChES. ... 13
0.1 FOr All o 13
0.2 EXIStS. i 14
6.3 Element Of e 14
7 Search FIlters.. .o, 15
7.1 INheritancCe. ..o 16
7.2 RefEIENCE...it e 16
7.3 Magic NUMbEr......coiiii e 17
7.4 Singleton......coooiiiiii 18

Code Query Language

7.5 BBaAN. i 18
7.6 Parameter List....cccovviiiiiiii s 19
7.7 PrimitiVe. s 19
7.8 NaAM . i 20
7.9 UNUSEA....c e 20
7.10 Entity. i 21
7.11 Method...c.cooiiiiii 21
7.12 AnnNOtation.....ccooiiiiii s 22
7.13 Full-Qualified Name.....c.oooeviviiiiiiieieeea e 22
7.14 ENtity TYPe. i 23
7.15 MOAIfi@r e 23
7.16 Literal Value.......ooiiee e 24
7.17 Return Type...cvii e 24
T7.18 MeELMC i 25
7.19 ClasS LeVEel. .. 25
7.20 EmMpty Set..iiii 26
7.21 Source Comment......ccoiiiiiiiiiii 26
7.22 Fieldbtype. . 27
7.23 Public Default-Constructor.........cccoevviiiiiiininnnnn. 27
7.24 Duplicated ClassS.......ccovviviiiiiiiiiiiien 28
7.25 Package......cooiiiiiiiiiiii 28
7.26 Throws EXception.......cccovviiiiiiiiiiiiiiiieeeens 29
7.27 SIgNAtUre.. ... 29
7.28 Shadowing Field.........coooviiiiiiiiiie, 30
8 MELMICS. i 31
8.1 Annotation Count.......cccoiiiiiiiiii s 31
8.2 Constructor Count.....ccoviiiiiiiiii e 31
8.3 Field Count.. .ot 31
8.4 Method Count....c.oviviiiiiiiii e 31
8.5 Parameter Count.....cociviiiiiiiiiii e 31
8.6 Public Field Count......cccoiiiiiiiiiii e 31
8.7 Public Constructor Count.......cocoviiiiiiiiiiiiiienns 31
8.8 Public Method Count.......coovvviviiiiiiice e, 32
8.9 Static Field Count.....cciiiiiiiii e 32
8.10 Static Method Count.....cccovviiiiiiiiiiiieeas 32
8.11 Single Lines of Code........ovveiiiiiiiiiiiiiiiiiineen, 32
8.12 Method Overriding Count..........ccoovvviiiiiiiinnnnn. 32
8.13 Name Character Count........coooviiiiiiiiiiiiiieens 32

8.14 Parent CoOUNL....cviiii e raeeas
8.15 Inner Class Count.....coovioeiieiiiii i
8.16 IMports CouNt.....covviiniiii e

Code Query Language

1 Introduction

The Code Query Language (CQL) is a domain-specific language used to query
the Java source code and bytecode. It is also a declarative language. According
to Wikipedia, declarative programming is a programming paradigm that
expresses the logic of a computation without describing its control flow.

In the context of the Reflection Toolkit (REFLECTK) this means that CQL is only
used to describe the attributes of a searched Java language entity and not how
to iterate over the classpath or to parse each classpath component. Some
concepts are borrowed from redicate logic others from the heory of sets.

Let's have a look at a few simple CQL statements to get a feeling for the
language syntax. The first statement lists all names of classes that implement
the interface java.io.Serializable.

select (@name
from classes
where
inherit ('java.io.Serializable');

The second example prints all names of static fields that are part of a class
implementing the interface java.io.Serializable.

select (@name
from fields
where
modifier ('STATIC')
&& elementof class {
inherit ('java.io.Serializable')

bi

The third and last example prints all names of methods starting with “is” and
having a boolean return type.

select (@name
from methods
where
returntype ('boolean') && name('is.*');

http://en.wikipedia.org/wiki/Declarative_programming

Search Entities

2 Search Entities

The intention of each CQL-described search is to find objects that match a
certain criteria. Throughout this document these objects are called search
entities. Because the search is performed on Java source code or bytecode,
search entities are Java language entities like classes, fields, methods or
annotations.

2.1 Packages

Package are the top-level entities. They are used to group a set of classes.
Considering a familiar Java class, the package is usually the declaration.

Synonyms :
pkg, pkg, package, packages

2.2 Classes

Class entities and all its sub entities may come in two different flavors: source
code and bytecode.

Synonyms :
cls, class, classes

2.3 Methods

Methods are important class members. It is important to know that a method
only exists in a class if it is actually declared in it. Even though a super class'
method can be invoked (if visibility is appropriate) at a sub class, it is not
declared within this class. In other words: in CQL methods are only listed when
they are declared within a specific class. Special cases are overridden methods.

Synonyms :
meth, method, methods

2.4 Fields

Fields are also imported class members. Basically everything that have been
said about methods is also applicable for fields. The only difference is that
overriding is not possible. Fields in a sub class are shadowing field with the
same name within the super class.

Synonyms H
fld, field, fields

2.5 Constructors

Constructors have to be declared within each class. If no constructor is
explicitly specified a default constructor is implicitly generated (if possible). The

Code Query Language

first statement within each constructors is a call of a super class' constructor.

Additionally to the normal constructors there exists another type of constructor:

the so called static constructor or class initializer. These constructors are used

to initialize static class content. Both types of constructors can be searched.
Synonyms:

con, constructor, constructors

2.6 Annotations

Basically all kind of search entity can be annotated. Even annotation can

annotated. Note that there exists different kind of annotations: some are only

available in source code, others are also available in bytecode, but not during

run time (compare java.lang.annotation.RetentionPolicy for further information).
Synonyms:

anno, annotation, annotations

2.7 Instructions

Some examples for Instructions are variable assignments or initializations,
exception handling blocks or method invocations.

Synonyms :
inst, instruction, instructions

2.8 Literals

Literals are simply primitive values.

Synonyms :
1lit, literal, literals

Syntax

3 Syntax

Basically a CQL statements consists of three different parts: attribute selection,
domain selection and conditional term. Here is the complete syntax
specification in EBNF notation. Note that all terminals (CQL language parts) are
bold and surrounded by double quotes. Non-terminals are italic and enclosed by
lesser/greater sign.

["set" <CLASSPATH> [<CLASSPATH>]]

(<VARTABLE>"="<SIGNATURE>";") *

(["select"] <ATTRIBUTE>+ ["from"] <ENTITY TYPE> [["where"] <TERM>]";")+
<CLASSPATH>: :="["<ARGUMENT> (<SEPARATOR><ARGUMENT>) *"1"
<SEPARATOR>: :=(","|":")
<ARGUMENT>::="'" [A"'"]x nrn
<VARIABLE>::="§" ("a"-"z" ["A"-"2"|"_")
("o"-"on | "a"-"z" |"A"-"Z"|"_")*
<SIGNATURE>: :=(<ARGUMENT>| <VARIABLE>)

(<SEPARATOR> (<ARGUMENT>| <VARIABLE>)) *

<ATTRIBUTE>: ::"@" (""" ["AN-"ZY " W)
(mon-ngn ["am-"Z" | "AT-_"Z" | "_")*

<ENTITY TYPE>::=("pkg"|"package"["s"]|
"cls" ‘ "class" ["es"] ‘
llmethll ‘ llmethodll [llsll] ‘
"con" | "constructor" ["s"] |
"f1d" |"field" ["s"] |
"anno" | "annotation" ["s"])

<TERM>: :=<FILTER>| ("not" |"!") <TERM>|
<TERM>(("and" |"&" |"&&" |"oxr" |"|"|"||" | "xor" | WAWY CTERM>) *
| <CONTEXT SWITCH>"{"<TERM>"}"

<CONTEXT SWITCH>::=("fa"|"forall"|"ex"|"exist"|
"eo" | "elementof" |"in")
("inner" |"innerclass" ["s"]

|
"super" | "superclass" ["es"] |
"sub" | "subclass" ["es"] |
"call" ["S"] ‘ "type" ["S"] ‘ "return" ["S"] ‘
"exception" ["s"] | "parameter" ["s"] |
<ENTITY TYPE>)

<FILTER>::="name"" ("<SIGNATURE>")"

Code Query Language

4 Attribute Selectors

Attribute selectors are used to specify the columns of the result set. Let's take a
look at a example that illustrates how attribute selectors are used. This CQL
statement prints 3 attributes of a shown search entity: the entity type, the entity
name and the last entity processed during the corresponding sub search. It
finds all classes that call any class with a full-qualified name starting with “java”.

select (@type @name (@last

from classes
where {
ex call ({

eo class {

Vi

Note that the @last selector prints the called entity that causes the actual class
to be part of the result set. The following figure shows the output of the given

CAQL statement:

134 CLASS

@name

fgname ('java.* ")

de.reflectk filter EntityTypeFilter

}

@last
CLASS|java.lang.Object

135 CLASS de.reflectk filter.FullQualifiedNameFilter CLASS|java.util.regex.Pattern
136 CLASS de.reflectk filter.InheritanceFilter CLASS|java.lang.Object
137 CLASS de.reflectk filter LiteralvalueFilter CLASS|java.util.regex.Pattern
138 CLASS de.reflectk filter.MagicNumberFilter CLASS|java.util. EnumSet

de.reflect|

k filter.MethodFiltergPolymorphism

CLASS|java.lang.Enum

de.reflectk filter.MethodFilter CLASS|java.lang.Object
141 CLASS de.reflectk filter. ModifierFilter CLASS|java.lang.Object
142 CLASS de.reflectk filter.NameFilter CLASS|java.util.regex.Pattern
143 CLASS de.reflectk filter.MotFilter CLASS|java.lang.Object

de.reflectk filter.OrFilter

CLASS|java.util List

00060 e0eeaeda
=
s
[}
>
(]
[

de.reflectk filter.PackageFiltergPkgMode

CLASS|java.lang.Enum

4.1 @type

de.reflectk filter PackageFilter

Selects the type of the search entity,

4.2 @name

Selects the name of the search entity,

4.3 @entity

Selects the search entity itself,

10

CLASS|javalang.String
7.0bject

Attribute Selectors

4.4 @last

Selects the last evaluated search entity. This selector is very useful in
combination with CQL statements that have context switches, because you can
output the reason a specific search entity is in the result set (compare the above
example).

4.5 @location

This key shows the first classpath entry the current search entity is located at.
Note that this is concordant to the class-loading behavior of the JVM.

4.6 @entries

This key shows all the classpath entries of the current search entity.

4.7 @card

This key shows amount of classpath entries of the current search entity.

4.8 @modifier

Determines the modifiers of the current search entity.

4.9 @magic_no

Determines the magic number of the current search entity. This key is only
applicable if bytecode is available.

4.10 @metric_*

Prints the calculated metric.

11

Code Query Language

5 Logical Operators

According to Wikipedia, a logical connective (also called a logical operator) is a
symbol or word used to connect two or more sentences (of either a formal or a
natural language) in a grammatically valid way, such that the compound
sentence produced has a truth value dependent on the respective truth values
of the original sentences.

In the CQL context, a logical operator is used to combine different filters to a
logical condition a searched entity has to met.

5.1 Not

Negation is a unary operator. It negates the operand's value. If the return value
of the negated filter is true, the resulting value is false.

Synonyms :
not, !,

5.2 And

Conjunction is a binary connection. It combines two or more logical expressions
to return true if and only if all involved filter values are true. Additionally to the
standard AND function there exists a so called conditional AND, which
guarantees to evaluate as few filters as necessary to compute the return value.

Synonyms :
and, &, && (conditional)

5.3 Or

Inclusive disjunction is a binary operator that created a truth-function that return
true if at least one of the connected filters returns true. A conditional OR is also
available.

Synonyms :
or, |, || (conditional)

5.4 Xor

In contrast to the previous mentioned OR function exclusive disjunction is a
binary connection that returns true if and only if exactly one of the filters returns
true.

Synonyms :
xor,

12

Context Switches

6 Context Switches

Context switches provide a mechanism either to reference the surrounding
context of a search entity or to specify conditions for the search entities within
another entity. In other words, context switches can be used to walk along the
edges of containment relations of Java language entities. For example: classes
consist of fields, methods and constructors. Methods have parameters, return
types, exceptions or annotations. Additionally all context switches have to be
specified with one quantifier.

The following graph displays all possible context switches:

package
field
’
l type ~ ¢
s

% annotation 0—//;
L) N e /
\hpe /
\ /
——— \ /
/,-" ~~ L. I /
exception B .4 #
parameter/ * class
call / =xceptio
; o exception
j parameter
/ retur
, ~ return
— constructor] ~ call
-:aII|| D
I method —
instruction ., J]
|
/
! type
!
/
4/
literal
6.1 For All

The universal quantifier is borrowed from predicate logic. It is used to express
that a given criteria of predicate matches for all objects in a given set.

13

Code Query Language

Synonyms :
forall, fa

6.2 Exists

The existential quantifier is also introduced by predicate logic, but in contrast to
the universal quantifier it is used to specify that there exists at least one object
in the set that matches a given criteria.

Synonyms :
exists, ex

6.3 Element Of

Set membership is used to specify that a specific element is part of a specific
set. It was originally defined by the theory of sets.

Synonyms :
elementof, eo, in

14

Search Filters

7 Search Filters

Filters (predicates) are a integral part of a CQL statement. They are used to
check attributes of search entities and to formulate the search condition. Here is
a list of all currently available filters. As a filter's name one of the string under
the corresponding synonyms section can be used. The parameters section
describes the filter's signature in EBNF notation. The type of search entity a
filter can be applied to is listed under supported entities.

The following section lists some parameters that are commonly used by various
search filters.

Operator:
<=, le (lesser or equal)
<, 1t (lesser)
=, ==, eq (equal)
<>, !=, not, ne (not equal)

>=, ge (greater or equal)
>, gt (greater)

Regular Expression Flags:

UNIX_LINES (only \n line terminator is recognized)

CASE_INSENSITIVE (case-insensitive matching)

COMMENTS (permits whitespace and comments with #)

MULTILINE (in multiline mode the expressions »~ and $ match just
after or just before a line terminator or the end of the
input sequence)

LITERAL (literal parsing of the pattern)

DOTALL (the expression . matches any character, including a line

terminator)

UNICODE_CASE (Unicode-aware case folding)

CANON_EQ (characters match if their full canonical decompositions

match)

15

Code Query Language

Entity Type:
PACKAGE

CLASS
CONSTRUCTOR
METHOD
FIELD
ANNOTATION
INSTRUCTION
RESOURCE
LITERAL

7.1 Inheritance

A search filter which is able to filter sub classes. As parameters this filter
accepts the class name of the super class or interface.

Additionally a sub class mode parameter can be specified that indicated which
type of sub classes should be searched. The ALL mode is used, if none is
specified.

Synonyms :

inherit, inheritance, extend, extends, implement, implements
Parameters:

<CLASSNAME> [, <SUB CLASS MODE>]

Sub Class Modes:
ALL (accept the class/interface itself and all subclasses),
REAL (accept all subclasses),
DIRECT (accept direct (first level) subclasses)

Supported Entities:
CLASS, FIELD

Search all classes that directly extends java.util. Comparator but that do not
implement the java.io.Serializable.

select (@name

from classes

where {

inherit ('java.util.Comparator', 'DIRECT')
&& !inherit ('java.io.Serializable')

7.2 Reference

Instances of this class search for references the specified elements. Can be
used for simple reference searches. Please take a look at the “call context
switch” (see MagicNumberFilter example) if you need further functionality.

16

Search Filters

Synonyms :
ref, reference

Parameters:
<ENTITY>

Supported Entities:
RESOURCE, PACKAGE, CLASS, CONSTRUCTOR, METHOD, FIELD, ANNOTATION

Search all classes that have one ore more references to the class
java.lang.StringBuffer.
select (@name
from classes
where {
reference ('java.lang.StringBuffer')

}

7.3 Magic Number

A search filter which is able to filter classes by their magic number. This is a bit
misleading, since in OS terms all classfiles have the same magicnumber. Each
classfile starts with the following section:

1. 4 bytes magic number (always OxCAFEBABE)
2. 2 bytes minor version
3. 2 bytes major version

This filter actually uses the major version of the classfile. This filter will work on
bytecode only.

Synonyms :
magic, magicnumber

Parameters:
<OPERATOR>, <MAGIC NUMBER>

Magic number:
V1_1 (45, 0x2D)
V1_2 (46, 0x2E)
V1_3 (47, 0x2F)
v1_4 (48, 0x30)
V1_5 (49, 0x31)
V1l_6 (50, 0x32)

Supported Entities:
CLASS

Search all classes compiled with JDK5 or later referencing
java.lang.StringBuffer.

17

Code Query Language

select (@name
from classes
where {
magicnumber ('>="', 'V1_5")
&& exist call {
entity ('Jjava.lang.StringBuffer')

}

7.4 Singleton
Filter which finds classes that uses the singleton design pattern.

Synonyms :
singleton

Supported Entities:
CLASS

Search all references to singletons.

select (@name
from classes
where {
exist call {
elementof class {
singleton ()

}

7.5 Bean

SearchFilter which can detect Java Beans (classes satisfying the Java Beans
Specification). A class is detected as a valid Java Bean must fulfill the following
criterias:

1. It must implement java.io.Serializable
2. It must declare a public constructor without arguments
3. It must declare at least one getter with a matching setter

The last criteria can be parameterized by passing a ThresholdStrategy so it's
possible that only classes with more than n bean attributes are rated as beans.
Without a parameter all beans with one ore more attributes are accepted.

Synonyms :
bean

Parameters:
[<OPERATOR>, <THRESHOLD>]

Supported Entities:
CLASS

18

Search Filters

Search all classes hat fulfill the bean contract and that have more than 20
attributes.

select (@name
from fields
where {
elementof class {
bean('>"', '20")
}

7.6 Parameter List

A search filter which is able to filter methods and constructors by their
parameter lists.

Synony;ﬂs H
paramlist

Parameters:
(<CLASSNAME>) *

Supported Entities:
CLASS

Search all classes that have private paramless constructors.

select (@name
from class
where ({
exist constructor {
modifier ('"PRIVATE') && paramlist ()

}

7.7 Primitive

Filter that accepts all primitive classes. Datatypes that are considered primitive
are: boolean, int, short, float, double, void, byte and char.

Synonyms :
primitive

Supported Entities:
CLASS

Search all methods that have primitive returntypes or a primitive parameter.

19

Code Query Language

select (@name
from methods
where {
exist return {
primitive ()
}
|| exist parameter {
primitive ()

}

7.8 Name

Search filter that accepts all entities that have a simple name matching the
specified regular expression. The name is not the full qualified name, i.e. the
parts that correspond to the package are omitted.

Synonyms :
name

Parameters:
<REGULAR EXPRESSION> (, <REGULAR EXPRESSION FLAGS>)*

Supported Entities:
PACKAGE, CLASS, CONSTRUCTOR, METHOD, FIELD, ANNOTATION

Search all serializable classes that do not have a static field serialVersionUID.

select (@name
from classes
where {
inherit ('java.io.Serializable'")
&& 'exist field {
name ('serialVersionUID')
&& modifier ('STATIC')

7.9 Unused

This filter tests weather the entity to be accepted is unused throughout the
whole classpath.

Note: This operation is time-consuming. You may want to use it in combination
with a caching mechanisms.

Synonyms :
unused, notused

Supported Entities:
ANNOTATION, CLASS, CONSTRUCTOR, FIELD, INSTRUCTION, LITERAL, METHOD,
PACKAGE, RESOURCE

Search all non-private fields that are not used (not referenced).

20

Search Filters

select (@name
from fields
where {
modifier ('"PRIVATE') && unused()
}

7.10 Entity

A search filter which that accepts exactly matching entities only.

Synonyms :
entity

Parameters:
entity

Supported Entities:
ANNOTATION, CLASS, CONSTRUCTOR, FIELD, INSTRUCTION, LITERAL, METHOD,
PACKAGE, RESOURCE

Search all calls to Object's wait method.

select (@name
from methods
where {
exist call {
entity('java.lang.Object#wait () ")
}

7.11 Method

Search filter that accept methods that match the specified method.

Synonyms :
declare, decl

Parameters:
<POLYMORPHISM>, <METHOD ENTITY>
<POLYMORPHISM>, <CLASSENTITY>, <METHODNAME>(, <CLASSENTITY>)™*

Polymorphism:
OVERRIDING (accept methods that override a method)
OVERLOADING (accept methods that overload a method)
DECLARING (accept methods that declare a method)

Supported Entities:
METHOD

Search all classes that do override Object's equals but not hashCode.

21

Code Query Language

select (@name
from classes
where {
exist method {
decl ('OVERRIDING', 'java.lang.ObJject#equals (java.lang.Object) ')
}
&& l!exist method ({
decl ('OVERRIDING', 'java.lang.Object#hashCode()")
}

7.12 Annotation

A search filter which is able to filter classes by their annotation(s).

Synonyms :
annotated

Parameters:
<CLASSNAME> (, <KEY>"="<VALUE>)* [, <PARAMETER MATCHING>]

Parameter Matching:
IGNORE (annotation's parameters are ignored completely)
SUBSET (the specified annotation's parameters have to be a subset of
the read annotation's parameters)

SUPERSET (the specified annotation's parameters have to be a
superset of the read annotation's parameters)

EXACT_MATCH (the specified annotation's parameters have to match the

read annotation's parameters exactly)

Supported Entities:
ANNOTATION, CLASS, CONSTRUCTOR, FIELD, INSTRUCTION, LITERAL, METHOD,
PACKAGE, RESOURCE

Search all methods in classes named Test.* oder .*Test that are annotated with
JUnit's @Test annotation.
select (@name
from methods
where {
elementof class {
name ('.*Test') || name ('Test.*')

}
&& annotated('org.junit.Test')

7.13 Full-Qualified Name

Search filter that accepts all entities that have a full qualified name matching the
specified regular expression. Contrary to the NameFilter this search filter
compares the fullqualified names (e.g. classes "com.example.Foo" or package
"com.example" where NameFilter would see "Foo" respectively "example")

22

Search Filters
Synonyms :
fgname

Parameters:
<REGULAR EXPRESSION> (, <REGULAR EXPRESSION FLAGS>)*

Supported Entities:
PACKAGE, CLASS, CONSTRUCTOR, METHOD, FIELD, ANNOTATION

Search all classes that have references to Class#forName calls (Reflection
API).

select @name
from classes
where {
exist call {
etype ('METHOD') && fgname ('Jjava.lang.Class#forName.*"')

}

7.14 Entity Type
A search filter which is able to filter entities by their type.

Synonyms :
etype

Parameters:
<ENTITY TYPE>

Supported Entities:
ANNOTATION, CLASS, CONSTRUCTOR, FIELD, INSTRUCTION, LITERAL, METHOD,

PACKAGE, RESOURCE

Search all methods accessing a field of type int.

select (@name
from methods
where {
exist call {
etype ('FIELD') && fieldtype('int'")

}

7.15 Modifier

A search filter which is able to filter entities by their modifier.

23

Code Query Language

Synonyms :
mod, modifier

Parameters:
<MODIFIER>

Modifier:
PUBLIC, PRIVATE, PROTECTED
STATIC, FINAL, STRICTFP
SYNCHRONIZED, VOLATILE
TRANSIENT, NATIVE
INTERFACE, ABSTRACT, ENUM, ANNOTATION, VARARGS
SYNTHETIC, BRIDGE

Supported Entities:
CLASS, METHOD, FIELD, CONSTRUCTOR

Search all native methods

select (@name
from methods
where {
modifier ('NATIVE')
}

7.16 Literal Value

Search filter that accept literals that match a specified value and optional a
specified type.

Synonyms :
litval

Parameters:
<VALUE> [, <CLASSENTITY>]

Supported Entities:
LITERAL

Search all classes that have references to a (String) literal containing the text
"icon". This filter uses regular expression so ".*icon.*" is specified in the
example.
select @name
from classes
where {
ex call {
etype('literal') && litval('.*icon.*'")
}

7.17 Return Type

A search filter which is able to filter methods by their return value.

24

Search Filters
Synonyms :
returntype

Parameters:
<CLASSENTITY>

Supported Entities:
METHOD

Search all methods that do return booleans.

select (@name
from methods
where {
exist call {
etype ('"METHOD') && returntype ('boolean')

}

7.18 Metric

A search filter that filters entities based on metrics. Which metric is used can be
passed to the filter beside the threshold to use.

The corresponding metric types are discussed in detail later on. Please refer to
the following chapter.

Synonyms :

metric

Parameters:
<METRIC TYPE>, <THRESHOLD OPERATOR>, <THRESHOLD>

Search all classes that have more than 15 fields.
select (@name
from classes
where {
metric('FC','>","'15")
}

7.19 Class Level

Search filter that can search for top level or nested classes.

25

Code Query Language

Synonyms :
level

Parameters:
<LEVEL TYPE>

Level Type:
OUTER (top level class)
INNER (nested (inner) class defined inside another class)

Supported Entities:
CLASS

Search all non-private nested (inner) classes.

select (@name
from classes
where {
Imodifier ('PRIVATE') && level ('INNER')

}

7.20 Empty Set
This filter tests weather the considered feature set is empty.

Synonyms :
empty, emptyset

Parameters:
<ENTITY TYPE>

Supported Entities:
ANNOTATION, CLASS, CONSTRUCTOR, FIELD, INSTRUCTION, LITERAL, METHOD,

PACKAGE, RESOURCE

Search all interfaces that have fields but no methods. This is known as
"Constant Interface Antipattern".
select (@name
from classes
where {
modifier ('INTERFACE')

&& emptyset ('METHOD')
&& l'emptyset ('FIELD')

7.21 Source Comment

This filter tests checks for matches of the passed regular expression in each
class' comments. This filter will work on source code only.

26

Search Filters
Synonyms :
<comment>

Parameters:
<REGULAR EXPRESSION> (, <REGULAR EXPRESSION FLAGS>)*

Supported Entities:
CLASS

Search all classes that have do not have an source comment named “@author”.

select (@name
from class
where {
!comment ('@author'")

}

7.22 Fieldtype
A search filter which is able to filter fields by their type.

Synonyms :
fieldtype

Parameters:
<CLASSENTITY>

Supported Entities:
FIELD

Search class that defines a fields named serialVersionUID that is not final nor
static nor of type long.

select (@name
from classes

where {
inherit ('java.io.Serializable')
&& exist field {
name ('serialVersionUID')
&& |
Imodifier ('"FINAL')
|| 'modifier ('STATIC')
|| 'fieldtype('long')

7.23 Public Default-Constructor
Search filter that accepts all public default constructors.

Synonyms :
publicdefault, pubdef

Supported Entities:
CLASS, CONSTRUCTOR

27

Code Query Language

Search all classes that are annotated with com.example.LoadedByReflection
that indicates that the annotated class will be loaded via Reflection API that
does not have a public zero arg constructor. Trying to load such a class would
end in a RuntimeException.

select @name

from classes

where {
annotated('com.example.LoadedByReflection')
&& !publicdefault ()

7.24 Duplicated Class

A search filter which is capable to find classes that reside multiple times on the
classpath. If no parameter is given “FULL_QUALIFIED” mode is used.

Synonyms :
duplicate

Parameters:
[<DUPLICATION MODE>]

Duplication Mode:
SIMPLE_NAME (ignore the package name and compare simple names)

SIMPLE_NAME_IGNORE_CASE (same as previous but case-insensitive)
FULL_QUALIFIED (classes that have completely identical names)

Supported Entities:
CLASS

Search for classes that have identical simple names.

select (@name
from classes
where {
duplicate ('SIMPLE_NAME')
}

7.25 Package

Filter that accepts all classnames in the same package than the passed
package name. If no parameter is given “SAME_OR_SUB” mode is used.

28

Search Filters

Synonyms :
packagename

Parameters:
<PACKAGEENTITY> [, <PACKAGE_MODE>]

Package Mode:
SAME (accept entites that resists in the passed package)

SAME_OR_SUB (accept entites that resists in the passed or in a
sub package)
SUB (accept entites that resists in a sub package)

Supported Entities:
PACKAGE, CLASS, CONSTRUCTOR, METHOD, FIELD, ANNOTATION

Search all classes that have references to classes in the package javax.swing.

select (@name
from classes
where exist call {
elementof class {
packagename (' javax.swing', 'SAME_OR_SUB')
}

7.26 Throws Exception

A search filter which is able to filter methods and constructors by their thrown
exceptions.

Synonyms :
exception, throws

Parameters:
<CLASSENTITY>

Supported Entities:
METHOD, CONSTRUCTOR

Search all methods that declares to throw |IOExceptions.

select (@name
from methods
where {
throws ('java.io.IOException')

}

7.27 Signature

A search filter which is able to filter methods by their signatures. This is
achieved by combining a ReturnType Filter and a ParameterList Filter.

29

Code Query Language

Synonyms :
signature, sig
Parameters:
<CLASSENTITY> (, <CLASSENTITY>)*

Supported Entities:
METHOD

Search all classes that define a main method.

select (@name

from classes

where exist method {
name ('main')
&& signature('void', 'java.lang.String[]")
&& modifier ('PUBLIC') && modifier ('STATIC')

7.28 Shadowing Field

A search filter which is able to filter fields that are shadowed. A shadowed field
is a field that exists in one of the class's super classes (fields cannot be
overridden).

Synonyms :
shadow, shadows, shadowing, isshadowed

Supported Entities:
FIELD

Search all classes that contains shadowed fields

select (@name
from classes
where {
exist field {
isshadowed ()

}

30

Metrics

8 Metrics

This section explains the different metric types that are supported by the
corresponding metric filter.

8.1 Annotation Count

Number of annotations for an entity.

Synonyms :
AC

8.2 Constructor Count

Number of constructors declared by a specific class.

Synonyms :
cC

8.3 Field Count

Number of fields declared by a specific class.

Synonyms :
FC

8.4 Method Count

Number of methods declared by a specific class.

Synonyms :
MC

8.5 Parameter Count

Number of parameters of a method. Very long signatures are often seen as a
sign of poor design.

Synonyms :
PC

8.6 Public Field Count

Number of public fields variables use by the class.

Synonyms :
BHE

8.7 Public Constructor Count

Number of public constructors in this class.

31

Code Query Language

Synonyms :
PCC

8.8 Public Method Count

Number of public methods in this class.

Synonyms :
PMC

8.9 Static Field Count

Number of static fields.

Synonyms :
SFC

8.10 Static Method Count

Number of static methods.

Synonyms :
SMC

8.11 Single Lines of Code

Number of code lines in the entity. Comments and empty lines are not counted.
Large classes/methods are usually a sign of poor design. LOC are interpreted
as instructions on bytecode level.

Synonyms :
SLOC

8.12 Method Overriding Count

Number of times the method is overridden in the complete class hierarchy.

Synonyms :
MOC

8.13 Name Character Count

Number of characters in a name.

Synonyms :
NCC

8.14 Parent Count

Number of parents of the passed class.

32

Metrics

Synonyms :
PARC

8.15 Inner Class Count

Number of inner classes in this class.

Synonyms :
ICC

8.16 Imports Count

Number of imports of a class.

Synonyms :
IC

33

Code Query Language

Alphabetical Index

A

AC 31
AN, 12
Annotation..........c.coceiiiinn, 8, 22
Annotation Count..........coooviiiinnnnn. 31
Attribute Selector.........coccvvvviiiinnnns 10
Attribute Selectors...........cooevviiinnns 10
B

BEaN...ciiii i 18
C

G i 31
ClasS. i 7
Class Level...coivvioviiiiiicieiiieeens 25
Code Query Language..............c....... 6
Conditional And..........ccceveviiiniinnnnn. 12
Conditional Conjunction.................. 12
Conditional Disjunction................... 12
Conditional Or.....cccovvvviviiiiiiiienns 12
Conjunction.......ccovviiiniin 12
Constructor.....cocovivviii e 7
Constructor Count..........cooevevviennnnn. 31
Context SWitCh.....coocvviiiiiiiiens 13
CQL. it 6
D

Disjunction.......ccocoviiiiiiiiiiiii 12
Duplicated Class.........cocovvuvviiinninnns 28
E

EBNF. .o 9,15
Element Of......ooovviiiiiiiiiiiccen 14
Empty Set....coooiiiii 26
Entity..ooieiii 21
Entity Type..oovvviviiiiiiii 23
T o 14
2 14
Exclusive Disjunction...................... 12
Existential Quantifier..............eevnent 14
EXIStS. iniiiiiiiiii e 14
F

= PP 13
FC it 31
Field. ..o, 7
Field Count.......coovvviiiiiiiiiiiiicen 31
Fieldtype.....ccoovviiiiiiiiii 27
1 = 15
FOr Al 13
Full-Qualified Name.........cocovvvevinennns 22

34

|

L i 33
ICC i 33
Imports Count......cocovevviiiiiiiiiiinnnne, 33
o TR 14
Inclusive Disjunction....................... 12
Inheritance......coccoeviiiiiiiiiien 16
Inner Class Count..........ccoeevvenininnnnn. 33
Instruction.....ccocviviiiii 8
J

Java. . 6
Java Virtual Machine........................ 11
JVM 11
L

Literal. oo 8
Literal Value........oocovvviviiiiiiiiien, 24
Logical Operator........cc.covvviiiennennee. 12
M

Magic Number........cccovviiiiiiinenan, 17
MC i 31
Method.........coiviiiii 7,21
Method Count........cocvvviviiiiiiiiinene, 31
Method Overriding Count................ 32
MetriC...oocvviiii 25, 31
MOC.. i 32
Modifier....ocoiviiiiiiiii 23
N

NaME. i 20
Name Character Count.................... 32
NCC. e 32
Negation.......ccociviiiiiic 12
NOt. 12
0]

Operator......cooevveiiiiiiiiicea 12
(O] PP 12
P

Package.......ccoovviviiiiiiiiiin 7,28
Parameter Count........cccooevevvieininnnnns 31
Parameter List......cococovviiiiiiiiiniinn, 19
PARC. ...t 33
Parent Count.........coeviviiiiiiiiinennn, 32
P 31
PCC i 32
PEC. i 31
PMC..eii 32

Metrics

Predicate.......cocoviviiiiiiiiiiiieen 15
Predicate LOGiC.......ccoovvvviinnnnnnnnn, 6, 14
Primitive.....cccoiviiiie 19
Public Constructor Count................. 31
Public Default-Constructor.............. 27
Public Field Count..........cccovevviniennnnn. 31
Public Method Count....................... 32
Q

Quantifier.....coccoviiiii, 13
R

Reference.....coccoeviviiiiiiiiiiceeeen, 16
Reflection ToolKit........covvviiviviiinennn. 6
REFLECTK...iviiiiiiiiii i 6
Return Type....coooviiiiiiiiiiiee 24
S

Search Entity......ccooovviiiiiiiiiin, 7
Search Filter......cccocviiiiiiiiiinn, 15
SeleCtor.. oo, 10
Set Membership........ccooveiiiiinininne. 14
SFC i 32
Shadowing.....ccoovviiviiiiniiice, 7
Signature......cooccoviii 29
Single Lines of Code.........c..cccuveenee. 32
Singleton......oooeviieiiii e, 18
SLOC. i 32
SMC .o 32

Source Comment........cocevviiiiiinnen. 26
Static Field Count..........cccoeeiiiennne. 32
Static Method Count....................... 32
SYNEAX. it 9
T

Theory of Sets.....cocovveiviiiiiiinnnnn 6, 14
Throws Exception..........ccoeevvvinnennnen 29
U

Universal Quantifier............coooeiinins 13
UNUSEd......coviiiiiiiciceccceee e 20
X

KOl ettt 12
.. 17
@

@CArd. i 11
@entity..cooviiiii 10
@eNntries...cocviiiiiii 11
@last..ciiii 11
@location.....ccoeeviiiiii 11
@MAQGIC_NO..cieiiieieeieee e 11
@MELriC_ * . 11
@mModifier...cccociviiiiii i 11
@NAME.. e 10
OLYPE i 10

35

	 1 Introduction
	 2 Search Entities
	 2.1 Packages
	 2.2 Classes
	 2.3 Methods
	 2.4 Fields
	 2.5 Constructors
	 2.6 Annotations
	 2.7 Instructions
	 2.8 Literals

	 3 Syntax
	 4 Attribute Selectors
	 4.1 @type
	 4.2 @name
	 4.3 @entity
	 4.4 @last
	 4.5 @location
	 4.6 @entries
	 4.7 @card
	 4.8 @modifier
	 4.9 @magic_no
	 4.10 @metric_*

	 5 Logical Operators
	 5.1 Not
	 5.2 And
	 5.3 Or
	 5.4 Xor

	 6 Context Switches
	 6.1 For All
	 6.2 Exists
	 6.3 Element Of

	 7 Search Filters
	 7.1 Inheritance
	 7.2 Reference
	 7.3 Magic Number
	 7.4 Singleton
	 7.5 Bean
	 7.6 Parameter List
	 7.7 Primitive
	 7.8 Name
	 7.9 Unused
	 7.10 Entity
	 7.11 Method
	 7.12 Annotation
	 7.13 Full-Qualified Name
	 7.14 Entity Type
	 7.15 Modifier
	 7.16 Literal Value
	 7.17 Return Type
	 7.18 Metric
	 7.19 Class Level
	 7.20 Empty Set
	 7.21 Source Comment
	 7.22 Fieldtype
	 7.23 Public Default-Constructor
	 7.24 Duplicated Class
	 7.25 Package
	 7.26 Throws Exception
	 7.27 Signature
	 7.28 Shadowing Field

	 8 Metrics
	 8.1 Annotation Count
	 8.2 Constructor Count
	 8.3 Field Count
	 8.4 Method Count
	 8.5 Parameter Count
	 8.6 Public Field Count
	 8.7 Public Constructor Count
	 8.8 Public Method Count
	 8.9 Static Field Count
	 8.10 Static Method Count
	 8.11 Single Lines of Code
	 8.12 Method Overriding Count
	 8.13 Name Character Count
	 8.14 Parent Count
	 8.15 Inner Class Count
	 8.16 Imports Count

